·物理·生物·技术·

量化分析 R624-SCF 型固定装置在肺部 SBRT 过程中摆位误差

张俊 黄啸天 谢丛华 周云峰 鲍志荣 王大奖 陈诚 刘晖

430071 武汉大学中南医院放疗科(张俊、谢丛华、周云峰、鲍志荣、王大奖、陈诚、刘晖); 430072 武汉大学物理科学与技术学院(黄啸天) 通信作者:刘晖, Email: liuhui69_wh@ hotmail.com DOI: 10.3760/cma.j.issn.1004-4221.2018.04.013

【摘要】目的 应用 KV-CBCT 评估 R624-SCF 型固定装置在肺部 SBRT 治疗过程中的摆位误差, 定量分析放疗过程中各种误差在累计摆位误差中的占比情况,揭示摆位误差的主要来源。方法 采集 32 例肺部肿瘤患者每周的 CBCT 数据及加速器每个月的 QA 数据,定量计算不同摆位误差。使用统计 模型计算累计误差,并分析各次误差占比情况及来源。结果 32 例患者通过 420 次 CBCT 扫描。固定 装置的摆位在水平、头脚、垂直 3 个方向上的误差分别为(0.03±0.72)、(0.73±1.16)、(-0.21±0.95) mm。 肿瘤靶区运动位移在水平、头脚、垂直 3 个方向上的误差分别为(0.01±2.61)、(-0.80±2.60)、(0.075± 1.77) mm。通过 Vance Keeling 公式计算误差,得到线性模型中各项误差占比情况:累计误差 54.55%, 固定装置 9.21%,肿瘤运动 12.97%,治疗床沉降 2.55%,机架旋转中心 5.70%,准直器旋转中心 4.73%, 治疗床旋转中心 4.61%,X 线射野中心 5.70%。结论 肺癌 SBRT 治疗过程中造成靶区误差的主要因 素依次为摆位的随机性、肿瘤运动、固定装置、治疗床沉降以及机器等中心。在放疗过程中有针对性地 控制肿瘤运动、对减小累计误差有重要意义。

【关键词】 肺肿瘤/放射疗法; 摆位误差; 累计误差 基金项目:湖北省自然科学基金(2011CDA135、2012FFA130)

Quantitative analysis of setup errors in lung SBRT with R 624 - SCF immobilization equipment Zhang Jun, Huang Xiaotian, Xie Conghua, Liu Hui, Bao Zhirong, Wang Dajiang, Chen Cheng, Zhou Yunfeng

Department of Radiation Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China (Zhang J, Xie CH, Zhou YF, Bao ZR, Wang DJ, Chen C, Liu H); School of Physics and Technology, Wuhan University, Wuhan 430072, China (Huang XT)

Corresponding author: Liu Hui, Email: liuhui69_wh@ hotmail.com

[Abstract] Objective KV-CBCT was utilized to evaluate the setup errors in lung SBRT with R624-SCF immobilization equipment, quantitatively analyze the percentage of all types of errors in the cumulative errors and unravel the main sources of setup errors. Methods The CBCT data weekly and QA data monthly from 32 patients diagnosed with lung neoplasms were collected to quantitatively analyze the setup errors. The cumulative errors were calculated by statistical model. The proportion and source of each type of setup error All 32 patients received a total of 420 times of CBCT. The setup errors of was analyzed. Results immobilization equipment in the lateral, supine-inferior, anterior-posterior directions were (0.03 ± 0.72) mm, (0.73±1.16) mm and (-0.21±0.95) mm, respectively. The errors of tumor motion in three directions were (0.71 ± 2.61) mm, (-0.80 ± 2.60) mm and (0.075 ± 1.77) mm, respectively. According to the calculation formula proposed by Vance Keeling, the proportion of the cumulative error was 54.55%, 9.21% for immobilization equipment, 12. 97% for tumor motion, 2. 55% for couch sagging, 5. 70% for Gantry radiation isocenter, 4. 73% for Collimator radiation isocenter, 4. 61% for couch radiation isocenter and 5. 70% for Xray field isocenter, respectively. **Conclusions** The main factors of setup errors during SBRT treatment for lung cancer are setup random, tumor motion, immobilization equipment, couch sagging and machine isocenter. During radiotherapy, targeted control of tumor motion is of significance for minimizing the cumulative errors.

[Key words] Lung neoplasm/radiotherapy; Setup error; Cumulative error Fund program: Hubei Provincial Natural Science Foundation (2011cda135,2012ffa130)

放疗过程中的照射精度会直接影响放疗效果。 而影响照射精度的因素很多,如摆位误差,患者机体 和体内器官的不自主运动、辅助固定装置以及治疗 设备的固有偏差等。如何在 SBRT 治疗过程中量化 上述误差,临床意义重大。SBRT 技术具有单次剂 量高、治疗分次少、微小偏差会对正常组织造成很大 的伤害等特点,影响其疗效的主要因素是在治疗过 程中由呼吸运动导致靶区的运动及形变[1]。为有 效控制靶区的运动及形变,武汉大学中南医院与广 州科莱瑞迪公司共同研发了 R624-SCF 型 SBRT 固 定装置^[2].大大提高了 SBRT 技术的摆位精确度。 但是摆位的随机性和固定装置的偏差会产生随机误 差,从而造成肿瘤运动的偏差,影响放疗效果。因此 通过定量分析摆位误差的大小以及各种误差在累计 摆位误差中的占比情况[3],对改进摆位方法、完善 体架结构的设计和精准放疗有重要意义。

材料与方法

1.病例来源:随机选取 2013 年2 月至 2016 年8 月武汉大学中南医院放疗科采用瓦里安 iX 直线加 速器治疗的肺癌患者 32 例,其中 10 例肺部照射 3 次,其余 22 例肺部照射 5 次。男 20 例、女 12 例,年 龄 45~76 岁(中位数 57 岁)。32 例患者每位治疗分 次均 CBCT 确认至少 3 次(摆位后、自动修正后治疗 前以及治疗结束后的确认,最后 1 次确认主要是为 研究治疗过程中的肿瘤及机体的运动)。

2.摆位固定:采用纤维板和个体化的热塑模型 固定患者体位,使用 R624-SCF 型号的 SBRT 固定装 置^[2](图1)进行摆位固定。嘱患者平躺,适度调整 患者位置使其处于自我感觉舒适且便于重复的体位 后,抽取真空垫内气体使之成型。调整腹部滑尺位 于剑突下,调整腹部滑尺中部呼吸控制板的高度,最 大限度地控制因呼吸运动导致的肿瘤运动。所有患 者均使用腹压板进行辅助固定。

图 1 R624-SCF 型 SBRT 固定装置

3.CT 扫描及计划设计:所有患者均通过模拟

CT 定位,将定位激光对准选定的参考点,在体表参 考点放置标记点,大小不同的肿瘤选择不同的层厚 进行 CT 扫描。将 CT 扫描图像通过 Dicom 工作站 传送至计划系统,主管医师参考 CT,MRIPET-CT 等 影像图像勾画靶区和 OAR 范围,物理师根据主管医 师的计划申请单,使用 CT 定位确定等中心,设计 SBRT 计划。

4.CBCT 位置验证:采用瓦里安机载千伏级 CBCT 进行靶区位置验证,配准过程由 Varian OBI 系统完成,配准后由主管医师进行确认。误差>6 mm 时对患者重新摆位,误差在3~5 mm 时由系统 自动移床校正,校正后再次行 CBCT 确认校正位置, 此时若水平、头脚、垂直3个方向的误差均≤2 mm 即实施治疗。若第1次 CBCT 匹配后3个方位误差 均≤2 mm,则不需2次扫描,可直接实施治疗。照 射结束后,获取第3次 CBCT 数据。所有的图像配 准均采用软组织配准和体表配准,配准的目的是为 研究放疗过程中靶区的运动度。

5.误差计算:(1)真空垫和体架固定装置的误 差,多次放疗时不同患者的固定体架装置存在一定 的随机性,体架固定装置的松紧和位置偏差会影响 放疗的精确性,真空垫形变会导致位置偏移,因此通 过每位患者 5 次放疗的误差均值计算。以 Σ,表示 体架和真空垫的系统误差, σ_i 表示摆放体架和真空 垫的随机误差。(2)肿瘤运动的位移误差:通过分 次内的 CBCT 摆位误差, 定量得到肺部肿瘤运动的 误差,采用软组织配准计算肿瘤运动的偏移量。以 表示每次肿瘤运动的系统误差, σ 表示每次肿瘤运 动的随机误差。(3)治疗床的沉降误差:治疗床的 形变可引起患者体位的改变,使之偏离辐射治疗射 野.从而影响放疗的精确性。其数据来源于日常 QA,以表示治疗床的沉降误差。(4)等中心偏移误 差,包括机架旋转中心误差、准直器旋转中心误差、 治疗床旋转中心误差以及 X 线射野中心误差 4 种。 通过查询日常 QA 记录,并使用 Winston-Lutz test 系 统[4]统计水平、头脚、垂直3个方向的误差值,4种 误差分别由 ΣIso_{CR}、ΣIso_{ColliR}、ΣIso_{CouR}、ΣIso_{X-rav}表示。 (5)累计误差:通过单独分析每次放疗中的随机误 差和系统误差,计算不同软件和硬件治疗系统的误 差,定量分析每部分误差对累计误差的贡献,提供不 同的数据获取方法、数据分析方法及建模技术,保证 误差计算值和 QA 的有效性。利用 Keeling 等^[3]提 出的线性模型逐个提取出放疗过程中的摆位误差, 与每部分的系统误差线性相加,随机误差求平方和,

从而得到累计误差 Σ_{e} 。Keeling 线性模型累计误差 计算公式为(1),各项误差占累计误差的比值公式 为(2)。

$$\begin{split} & \sum_{c} = \sum_{f} + \sum_{t} + \sum_{b} + \sum_{c} + \sum_{Iso_{CR}} + \sum_{Iso_{ColliR}} + \\ & \sum_{Iso_{CouR}} + \sum_{Iso_{X-ray}}, \\ & \sigma_{c} = (\sigma_{f}^{2} + \sigma_{t}^{2} + \sigma_{GR} + \sigma_{ColliR}^{2} + \sigma_{CouR}^{2} + \sigma_{X-ray}^{2})^{\frac{1}{2}} \\ & \Delta_{c} = \sum_{c} + \sigma_{c} \\ & (1) \\ & P_{L}(\sigma_{c}) = \frac{\sigma_{c}}{\Delta_{c}}, P_{L}(f) = \frac{\sum_{f}}{\Delta_{c}}, P_{L}(t) = \frac{\sum_{t}}{\Delta_{c}}, \\ & P_{L}(b) = \frac{\sum_{b}}{\Delta_{c}}, P_{L}(ISO_{GR}) = \frac{\sum_{ISO_{CuR}}}{\Delta_{c}}, \\ & P_{L}(ISO_{ColliR}) = \frac{\sum_{ISO_{ColliR}}}{\Delta_{c}}, P_{L}(ISO_{CouR}) = \frac{\sum_{ISO_{CouR}}}{\Delta_{c}}, \\ & P_{L}(ISO_{X-ray}) = \frac{\sum_{ISO_{X-ray}}}{\Delta_{c}} \\ \end{split}$$

上述各公式中 Δ_e 表示累计误差, $P_L(\sigma_i)$ 表示总摆 位误差占累计误差的比值, $P_L(f)$ 表示固定装置系 统误差占累计误差的比值, $P_L(f)$ 表示肿瘤运动位 移系统误差占累计误差的比值, $P_L(b)$ 表示治疗床 沉降系统误差占累计误差的比值, ΣIso_{CR} 表示 Gantry Radiation 系统误差占累计误差的比值, $\Sigma Iso_{Colli R}$ 表示 CollimatorRadiation 系统误差占累计误 差的比值, $\Sigma Iso_{Couli R}$ 表示 Couch Radiation 系统误差占 累计误差比值, ΣIso_{X-ray} 表示 X-Ray 系统误差占累计 误差的比值。

5.统计方法:统计所有患者的体表配准和靶区 配准后的摆位误差数据,通过 SPSS 19.0 软件分析 误差数据分布,并计算均值、标准差、频数分布、系统 误差、随机误差及各项误差占累计误差的比值。

结 果

32 例患者体架和真空垫固定装置的误差在水 平、头脚、垂直方向分别为(0.03±0.72)、(0.73± 1.16)、(-0.21±0.95) mm,详见图 2;误差的最大值 为4 mm,最小值为-3 mm,其分布趋势详见图 3。体 架和真空垫固定装置头脚方向患者移动,误差最大; 垂直方向由于呼吸运动固定松紧,固定往往较好。 在随机误差的分布中,头脚方向的摆位不确定性最 大,达到 1.16 mm。

32 例患者肿瘤运动偏移量在水平、头脚、垂直 3 个方向分别为(0.71±2.61)、(-0.80±2.60)、 (0.075±1.77) mm(0.71±2.61)、(-0.80±2.60)、 (0.075±1.77) mm,详见图 4。通过分次内的靶区配 准得到的肿瘤运动偏移量在累计误差中最大,明显

图 2 32 例肺癌患者水平(2A)、头脚(2B)、垂直(2C)方向的体架 和真空垫固定装置的摆位误差频数分布

大于体架误差;头脚方向移动幅度大,偏移量亦最 大;前后方向由于体架固定,移动较小。每例患者各 次误差分布详见图5。

治疗床的沉降误差是机器的固有误差,在总的 累计误差中占比很小,详见表 1。通过日常 QA 可充 分了解治疗床的形变,合理控制误差。为模拟真实 情况,选择 60 kg 的正常成年人体质量为参考,将 3 个方向的误差求平方和,得到 $\Sigma_{\rm b} = 0.21$ mm。参考 keeling 线性模型计算 4 种等中心偏移误差, $\Sigma Iso_{\rm GR}$ 、 $\Sigma Iso_{\rm Collig}$ 、 $\Sigma Iso_{\rm Cour}$ 、 $\Sigma Iso_{\rm X-ray}$ 值 分 别 为 0.47、0.39、 0.38、0.47 mm。详见表 2。

在线性模型中使用公式(1)计算累计误差, Σ_{f} 为 0. 76 mm, σ_{t} 为 4. 50 mm, Σ_{t} 为 1. 07 mm, Σ_{b} 为 0. 21 mm, $\Sigma_{Iso_{GR}}$ 为 0. 47 mm, 为 $\Sigma_{Iso_{GR}}$ 0. 39 mm, 为 $\Sigma_{Iso_{ColliR}}$ 0. 38 mm, 为 $\Sigma_{Iso_{CoulR}}$ 0. 47 mm, 最终得到 的累计误差为 $\Sigma_{Iso_{\chi-ray}}$ 8. 25 mm。在线性模型中使

用公式(2)计算各项误差占比情况,摆位误差占累 计误差的比值最大(54.55%),肿瘤运动误差占 12.97%,固定装置误差占9.21%,加速器机头和X 线射野中心误差占5.7%,准直器误差占4.73%,治 疗床旋转误差占4.61%,治疗床沉降误差占 2.55%。

表1 32 例肺癌患者三个方向治疗床的沉降误差

方向	0 kg	30 kg	60 kg	90 kg
水平(mm)	0	0.08	0.10	0.12
头脚(mm)	0	0.06	0.10	0.10
垂直(mm)	0.09	0.10	0.15	0.30
总形变(mm)	0.09	0.14	0.21	0.34

表2 32 例肺癌患者三个方向等中心偏移误差(x±s)

方向 (mm)	加速器机架	准直器	治疗床	X 线射野中心
水平	0.25±0.25	0.31 ± 0.20	0.33±0.20	0.16±0.75
头脚	0.23 ± 0.23	0.24 ± 0.14	0.22±0.13	-0.39 ± 0.15
垂直	0.32 ± 0.32	n⁄a	n⁄a	0.21 ± 0.02

图 3 32 例肺癌患者多次放疗体架和真空垫固定装置摆位误差平均值(3A)和标准差(3B)散点图

讨 论

目前,基于千伏级 CBCT 的 SBRT 技术的图像 配准是以 CBCT 图像和定位 CT 图像重合度为依据, 定量计算得到摆位误差。在不考虑误差相互耦合的 情况下,本文作者分离出了体架和真空垫的误差、肿 瘤运动误差、治疗床沉降误差以及机器等中心线误

图 4 32 例肺癌患者水平(4A)、头脚(4B)、垂直(4C)方向肿瘤运动的摆位误差频数分布

差;在计算累计误差时采用2种不同的计算模型,定 量分析各项误差占累计误差的比值。本研究摆位不 确定性是真空垫和体架的误差、肿瘤运动误差、机器 等中心误差以及治疗床的沉降误差的综合表征。目 前,关于放疗过程中各种误差的量化分析相关文献 较少,关于摆位不确定性的文献很多,如何减少影响 放疗的不确定因素还需今后进一步讨论。

肺部肿瘤的 SBRT 摆位误差是累计误差的主体,占54.55%。Van^[5]的研究结果表明,摆位不确定性是由误差的标准差决定的,随机误差和系统误差都存在标准差。从统计学角度分析,标准差较大的误差不确定性更高,标准差较小的误差不确定性相对小。Keeling 等^[3]提出的线性模型对摆位的不确定性做出了定量解释,在放疗过程中,从图像配准到摆位、从治疗到评估均存在不确定性,对每个步骤中误差的标准差求均方根,可达到精确摆位。肿瘤运动误差占累计误差的第二位(12.97%),患者由于

图 5 32 例肺癌患者多次放疗肿瘤运动偏移量的平均值(5A)和标准差(5B)散点图

呼吸运动和肢体扭动,会造成肿瘤在头脚方向的移动,同时肿瘤本身在不同治疗分次中存在形变。体架和真空垫固定装置的误差占累计误差的第三位(9.21%),固定装置在治疗中起到限制患者移动的作用,其本身存在的形变和松紧也直接影响放疗精度。随机摆位误差是由于技师在摆位过程中,每次摆位位置选择的偏差所致,这种误差可以通过使用先进的辅助定位装置和图像引导设备减小。

等中心误差的占比相对较小,原因在于治疗机 在使用过程中受重力、机械等因素影响,在不同的方 向上会有微小的偏差,这与实际情况也相符,根据 TG-142 可在日常 QA 和月检中修正。治疗床的沉 降误差几乎可以忽略,碳素纤维床的非完全刚性结 构会产生形变误差,患者的体质量和治疗床的角度 在治疗过程中会导致治疗床出现沉降位移,从而影 响摆位误差。这一误差常无法通过技术手段修正, 可通过日常的 QA 充分了解治疗床的形变特点,为 放疗提供参考,合理控制误差。Mcgarry 等^[6]在计算 前列腺癌放疗过程中的误差时,参考了相关标准对 系统误差和随机误差的组成做出了具体说明^[7]。 系统误差主要来源于医生勾画肿瘤时的误差、患者 运动误差、模体的形变误差以及系统摆位误差,而随 机误差的主要来源是随机摆位误差和射线半影等。 CT 扫描、计划制定以及直线加速器等几何误差也会 对系统误差和随机误差造成影响。Megarry等^[6]分

析了误差的主要来源,发现不同的定义和计算方法 累积误差差异有统计学意义。

计算累计误差时不同误差会相互耦合,如治疗 床的误差与患者摆位误差的耦合,固定装置的误差 与摆位误差的耦合等。相互影响对于独立分析每一 部分的精确度和不确定性存在一定的困难,耦合在 数学层面很小,几乎可以忽略,但是为了更加精细地 对比和计算,需要定量分析各误差之间的相关性系 数,如何有效消除耦合需今后进一步研究。

目前,放疗过程中的靶区勾画和图像配准相关 文献较多。靶区轮廓勾画的不确定性是导致放疗误 差的重要来源之一,在临床工作中不同医生对统一 靶区的定位也会有细微差别,且对计划的实施和执 行也存在不确定性。本研究着重讨论了实际计划执 行过程中各项误差占累积误差的比值,并结合肺部 的 SBRT 治疗效果,探讨性地分析了摆位误差中的 不确定来源,对临床有一定的实际意义。

综上所述,使用 R624-SCF 型 SBRT 固定装置治 疗肺癌患者时,提高技师的摆位水准,并定量控制肿 瘤的位移,可显著降低放疗过程中的累计误差。

参考文献

- 郭明芳,郭雷鸣,赵娅琴,等.锥形束 CT 研究肺癌放射治疗中 的摆位误差[J].中国肿瘤临床,2009,36(15):848-852.DOI: 10.3969/j.issn.1000-8179.2009.15.003.
 Guo MF, Guo LM, Zhao YQ, et al. Interfractional and Intrafractional Errors in Radiotherapy of Lung Cancer Using Conebeam Computed Tomography (CBCT)[J]. Chin J Clin Oncol, 2009,36(15):848-852.DOI:10.3969/j.issn.1000-8179.2009.15. 003.
- [2] 刘晖,张俊,钟亚华,等. 自制体部固定装置在 SBRT 放疗中的应用分析 [J]. 中华放射肿瘤学杂志, 2013, 22(6): 501-503. DOI:10.3760/cma.j.issn.1004-4221.2013.06.021.
 Liu H, Zhang J, Zhong YH, et al. The analysis of clinical application of home-made immobilization device in SBRT [J]. Chin J Radiat Oncol, 2013, 22(6): 501-503. DOI: 10.3760/cma.j.issn. 1004-4221.2013.06.021.
- [3] Keeling V, Hossain S, Jin H, et al. Quantitative evaluation of patient setup uncertainty of stereotactic radiotherapy with the frameless 6D ExacTrac system using statistical modeling [J]. J Appl Clin Med Phys.2016,17(3):111-127.DOI:10.1120/jacmp. v17i3.5959.
- [4] Gao, JF. Liu, XQ. Off-Isocenter winston-lutz test for stereotactic radiosurgery/stereotactic body radiotherapy [J]. Int J Med Phys, Clin Engineer Radiat Oncol, 2016, 154-161. DOI. org/10. 4236/ ijmpcero.2016. 52017.
- [5] Van HM. Errors and margins in radiotherapy [J]. Semin Radiat Oncol, 2004, 14(1):52-64.
- [6] Mcgarry CK, Cosgrove VP, Fleming VA, et al. An analysis of geometric uncertainty calculations for prostate radiotherapy in clinical practice [J].Br J Radiol, 2009, 82(974):140.
- [7] Harrison AJL. Technical overview of geometric uncertainties in radiotherapy [J].Br Inst Radiol, 2003(1):11-44.